e despresando o segundo termo d'esta fórmula, temos um valor aproximado de r:

,-' = 0,0582.

Substituindo no segundo membro de (1) r por r', temos outro valor de r mais aproximado:

r" -0 0582 -^A0682- r 0,05o2 1058240.

Para achar o valor de r", calculemos em primeiro logar o termo

0,0582

qn ■ ...___ •

1,0582"' log x = log 0,0582 + 40 colg 1,0582, log 0,0582 = 2,7649230 4 0 colg 1,0582 =1,0172880 log x = 3,7822110, a; = 0,0061.

Logo r'< = 0,0582 — 0,0061 = 0,0521.

Substituindo no segundo membro de (1) r por r1', temos outro valor de r mais aproximado que o antecedente:

r"'= 0,0582

1,052140 " Calculemos o segundo termo

0.0582

x ■■

1,0821" '

logo X = log 0,0582 + 40 colg 1,0521, log 0,0582 = 2,7649230 40 colg 1,0521 =1,1177200

log x' = 3,8826430, a? = 0,0076.